Mode- and bond-selective reaction of Cl(2P3/2) with CH3D: C-H stretch overtone excitation near 6000 cm(-1).
نویسندگان
چکیده
Experiments explore the influence of different C-H stretching eigenstates of CH3D on the reaction of CH3D with Cl(2P3/2). We prepare the mid |110>|0>(A1,E), mid |200>|>0(E), and mid |100>|0> +nu3 +nu5 eigenstates by direct midinfrared absorption near 6000 cm(-1). The vibrationally excited molecules react with photolytic Cl atoms, and we monitor the vibrational states of the CH2D or CH3 radical products by 2+1 resonance enhanced multiphoton ionization. Initial excitation of the |200>|0>(E) state leads to a twofold increase in CH2D products in the vibrational ground state compared to|100>|0> +nu3 +nu5 excitation, indicating mode-selective chemistry in which the C-H stretch motion couples more effectively to the H-atom abstraction coordinate than bend motion. For two eigenstates that differ only in the symmetry of the vibrational wave function, |110>|0>(A1) and |110>|0>(E), the ratio of reaction cross sections is 1.00 +/- 0.05, showing that there is no difference in enhancement of the H-atom abstraction reaction. Molecules with excited local modes corresponding to one quantum of C-H stretch in each of two distinct oscillators react exclusively to form C-H stretch excited CH2D products. Conversely, eigenstates containing stretch excitation in a single C-H oscillator form predominantly ground vibrational state CH2D products. Analyzing the product state yields for reaction of the |110>|0>(A1) state of CH3D yields an enhancement of 20 +/- 4 over the thermal reaction. A local mode description of the vibrational motion along with a spectator model for the reactivity accounts for all of the observed dynamics.
منابع مشابه
Bond-Selective and Mode-Specific Dissociation of CH3D and CH2D2 on Pt(111).
Infrared laser excitation of partially deuterated methanes (CH3D and CH2D2) in a molecular beam is used to control their dissociative chemisorption on a Pt(111) single crystal and to determine the quantum state-resolved dissociation probabilities. The exclusive detection of C-H cleavage products adsorbed on the Pt(111) surface by infrared absorption reflection spectroscopy indicates strong bond...
متن کاملChemical dynamics of vibrationally excited molecules: Controlling reactions in gases and on surfaces.
Experimental studies of the chemical reaction dynamics of vibrationally excited molecules reveal the ability of different vibrations to control the course of a reaction. This Perspective describes those studies for the prototypical reaction of vibrationally excited methane and its isotopologues in gases and on surfaces and looks to the prospects of similar studies in liquids. The influences of ...
متن کاملUnimolecular processes in CH2OH below the dissociation barrier: O-H stretch overtone excitation and dissociation.
The OH-stretch overtone spectroscopy and dynamics of the hydroxymethyl radical, CH(2)OH, are reported in the region of the second and third overtones, which is above the thermochemical threshold to dissociation to H+CH(2)O (D(0)=9600 cm(-1)). The second overtone spectrum at 10 484 cm(-1) is obtained by double resonance IR-UV resonance enhanced multiphoton ionization (REMPI) spectroscopy via the...
متن کاملOvertone-induced dissociation and isomerization dynamics of the hydroxymethyl radical (CH2OH and CD2OH). II. Velocity map imaging studies.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following excitation in the 4ν(1) region (OH stretch overtone, near 13,600 cm(-1)) was studied using sliced velocity map imaging. A new vibrational band near 13,660 cm(-1) arising from interaction with the antisymmetric CH stretch was discovered for CH(2)OH. In CD(2)OH dissociation, D atom products (correlated ...
متن کاملLabel-free bond-selective imaging by listening to vibrationally excited molecules.
We report the realization of vibrational photoacoustic (VPA) microscopy using optical excitation of molecular overtone vibration and acoustic detection of the resultant pressure transients. Our approach eliminates the tissue scattering problem encountered in near-infrared spectroscopy and enables depth-resolved signal collection. The 2nd overtone of the CH bond stretch around 8300 cm(-1), wher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 125 13 شماره
صفحات -
تاریخ انتشار 2006